
Package index
-
weightit() - Estimate Balancing Weights
-
weightitMSM() - Generate Balancing Weights for Longitudinal Treatments
-
summary(<weightit>)plot(<summary.weightit>)summary(<weightitMSM>)plot(<summary.weightitMSM>) - Print and Summarize Output
-
method_bart - Propensity Score Weighting Using BART
-
method_cbps - Covariate Balancing Propensity Score Weighting
-
method_ebalmethod_entropy - Entropy Balancing
-
method_energy - Energy Balancing
-
method_gbm - Propensity Score Weighting Using Generalized Boosted Models
-
method_glm - Propensity Score Weighting Using Generalized Linear Models
-
method_ipt - Inverse Probability Tilting
-
method_npcbps - Nonparametric Covariate Balancing Propensity Score Weighting
-
method_optweightmethod_sbw - Stable Balancing Weights
-
method_super - Propensity Score Weighting Using SuperLearner
-
method_user - User-Defined Functions for Estimating Weights
-
glm_weightit()lm_weightit()ordinal_weightit()multinom_weightit()coxph_weightit() - Fitting Weighted Generalized Linear Models
-
predict(<glm_weightit>)predict(<ordinal_weightit>)predict(<multinom_weightit>) - Predictions for
glm_weightitobjects
-
anova(<glm_weightit>) - Methods for
glm_weightit()objects
-
trim() - Trim (Winsorize) Large Weights
-
calibrate() - Calibrate Propensity Score Weights
-
sbps() - Subgroup Balancing Propensity Score
-
get_w_from_ps() - Compute weights from propensity scores
-
ESS() - Compute effective sample size of weighted sample
-
weightit.fit() - Generate Balancing Weights with Minimal Input Processing
-
as.weightit()as.weightitMSM() - Create a
weightitobject manually
-
make_full_rank() - Make a design matrix full rank
-
plot(<weightit>) - Plot information about the weight estimation process
-
.weightit_methods - Weighting methods
-
msmdata - Simulated data for a 3 time point sequential study