Package index
-
weightit()
- Estimate Balancing Weights
-
weightitMSM()
- Generate Balancing Weights for Longitudinal Treatments
-
summary(<weightit>)
plot(<summary.weightit>)
summary(<weightitMSM>)
plot(<summary.weightitMSM>)
- Print and Summarize Output
-
method_bart
- Propensity Score Weighting Using BART
-
method_cbps
- Covariate Balancing Propensity Score Weighting
-
method_ebal
- Entropy Balancing
-
method_energy
- Energy Balancing
-
method_gbm
- Propensity Score Weighting Using Generalized Boosted Models
-
method_glm
- Propensity Score Weighting Using Generalized Linear Models
-
method_ipt
- Inverse Probability Tilting
-
method_npcbps
- Nonparametric Covariate Balancing Propensity Score Weighting
-
method_optweight
- Optimization-Based Weighting
-
method_super
- Propensity Score Weighting Using SuperLearner
-
method_user
- User-Defined Functions for Estimating Weights
-
glm_weightit()
ordinal_weightit()
multinom_weightit()
coxph_weightit()
lm_weightit()
- Fitting Weighted Generalized Linear Models
-
predict(<glm_weightit>)
predict(<ordinal_weightit>)
predict(<multinom_weightit>)
- Predictions for
glm_weightit
objects
-
anova(<glm_weightit>)
- Methods for
glm_weightit()
objects
-
trim()
- Trim (Winsorize) Large Weights
-
calibrate()
- Calibrate Propensity Score Weights
-
sbps()
- Subgroup Balancing Propensity Score
-
get_w_from_ps()
- Compute weights from propensity scores
-
ESS()
- Compute effective sample size of weighted sample
-
weightit.fit()
- Generate Balancing Weights with Minimal Input Processing
-
as.weightit()
as.weightitMSM()
- Create a
weightit
object manually
-
make_full_rank()
- Make a design matrix full rank
-
plot(<weightit>)
- Plot information about the weight estimation process
-
.weightit_methods
- Weighting methods
-
msmdata
- Simulated data for a 3 time point sequential study