This page documents methods for objects returned by glm_weightit()
, lm_weightit()
, ordinal_weightit()
, multinom_weightit()
, and coxph_weightit()
. predict()
methods are described at predict.glm_weightit()
and anova()
methods are described at anova.glm_weightit()
.
Usage
# S3 method for class 'glm_weightit'
summary(object, ci = FALSE, level = 0.95, transform = NULL, vcov = NULL, ...)
# S3 method for class 'multinom_weightit'
summary(object, ci = FALSE, level = 0.95, transform = NULL, vcov = NULL, ...)
# S3 method for class 'ordinal_weightit'
summary(
object,
ci = FALSE,
level = 0.95,
transform = NULL,
thresholds = TRUE,
vcov = NULL,
...
)
# S3 method for class 'coxph_weightit'
summary(object, ci = FALSE, level = 0.95, transform = NULL, vcov = NULL, ...)
# S3 method for class 'glm_weightit'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for class 'glm_weightit'
vcov(object, complete = TRUE, vcov = NULL, ...)
# S3 method for class 'glm_weightit'
update(object, formula. = NULL, ..., evaluate = TRUE)
Arguments
- object, x
an output from one of the above modeling functions.
- ci
logical
; whether to display Wald confidence intervals for estimated coefficients. Default isFALSE
. (Note: this argument can also be supplied asconf.int
.)- level
when
ci = TRUE
, the desired confidence level.- transform
the function used to transform the coefficients, e.g.,
exp
(which can also be supplied as a string, e.g.,"exp"
); passed tomatch.fun()
before being used on the coefficients. Whenci = TRUE
, this is also applied to the confidence interval bounds. If specified, the standard error will be omitted from the output. Default is no transformation.- vcov
either a string indicating the method used to compute the variance of the estimated parameters for
object
, a function used to extract the variance, or the variance matrix itself. Default is to use the variance matrix already present inobject
. If a string or function, arguments passed to...
are supplied to the method or function. (Note: forvcov()
, can also be supplied astype
.)- ...
for
vcov()
orsummary()
orconfint()
withvcov
supplied, other arguments used to compute the variance matrix depending on the method supplied tovcov
, e.g.,cluster
,R
, orfwb.args
. Forupdate()
, additional arguments to the call or arguments with changed values. Seeglm_weightit()
for details.- thresholds
logical
; whether to include thresholds in thesummary()
output forordinal_weightit
objects. Default isTRUE
.- digits
the number of significant digits to be passed to
format(coef(x), .)
whenprint()
ing.- complete
logical
; whether the full variance-covariance matrix should be returned also in case of an over-determined system where some coefficients are undefined andcoef(.)
containsNA
s correspondingly. Whencomplete = TRUE
,vcov()
is compatible withcoef()
also in this singular case.- formula.
changes to the model formula, passed to the
new
argument ofupdate.formula()
.- evaluate
whether to evaluate the call (
TRUE
, the default) or just return it.
Value
summary()
returns a summary.glm_weightit()
object, which has its own print()
method. For coxph_weightit()
objects, the print()
and summary()
methods are more like those for glm
objects than for coxph
objects.
Otherwise, all methods return the same type of object as their generics.
Details
vcov()
by default extracts the parameter covariance matrix already computed by the fitting function, and summary()
and confint()
uses this covariance matrix to compute standard errors and Wald confidence intervals (internally calling confint.lm()
), respectively. Supplying arguments to vcov
or ...
will compute a new covariance matrix. If cluster
was supplied to the original fitting function, it will be incorporated into any newly computed covariance matrix unless cluster = NULL
is specified in vcov()
, summary()
, or confint()
. For other arguments (e.g., R
and fwb.args
), the defaults are those used by glm_weightit()
. Note that for vcov = "BS"
and vcov = "FWB"
(and vcov = "const"
for multinom_weightit
or ordinal_weightit
objects), the environment for the fitting function is used, so any changes to that environment may affect calculation. It is always safer to simply recompute the fitted object with a new covariance matrix than to modify it with the vcov
argument, but it can be quicker to just request a new covariance matrix when refitting the model is slow.
update()
updates a fitted model object with new arguments, e.g., a new model formula, dataset, or variance matrix. When only arguments that control the computation of the variance are supplied, only the variance will be recalculated (i.e., the parameters will not be re-estimated). When data
is supplied, weightit
is not supplied, and a weightit
object was originally passed to the model fitting function, the weightit
object will be re-fit with the new dataset before the model is refit using the new weights and new data. That is, calling update(obj, data = d)
is equivalent to calling update(obj, data = d, weightit = update(obj$weightit, data = d))
when a weightit
object was supplied to the model fitting function.
The estfun()
method for multinom_weightit
and ordinal_weightit
objects (which is used by function in the sandwich package to compute coefficient covariance matrices) simply extracts the gradient
component of the object. For glm_weightit
and coxph_weightit
objects, the glm
and coxph
methods are dispatched instead.
See also
glm_weightit()
for the page documenting glm_weightit()
, lm_weightit()
, ordinal_weightit()
, multinom_weightit()
, and coxph_weightit()
. summary.glm()
, vcov()
, confint()
for the relevant methods pages. predict.glm_weightit()
for computing predictions from the models. anova.glm_weightit()
for comparing models using a Wald test.